13 research outputs found

    Diffusion of e-health innovations in 'post-conflict' settings: a qualitative study on the personal experiences of health workers.

    Get PDF
    BACKGROUND: Technological innovations have the potential to strengthen human resources for health and improve access and quality of care in challenging 'post-conflict' contexts. However, analyses on the adoption of technology for health (that is, 'e-health') and whether and how e-health can strengthen a health workforce in these settings have been limited so far. This study explores the personal experiences of health workers using e-health innovations in selected post-conflict situations. METHODS: This study had a cross-sectional qualitative design. Telephone interviews were conducted with 12 health workers, from a variety of cadres and stages in their careers, from four post-conflict settings (Liberia, West Bank and Gaza, Sierra Leone and Somaliland) in 2012. Everett Roger's diffusion of innovation-decision model (that is, knowledge, persuasion, decision, implementation, contemplation) guided the thematic analysis. RESULTS: All health workers interviewed held positive perceptions of e-health, related to their beliefs that e-health can help them to access information and communicate with other health workers. However, understanding of the scope of e-health was generally limited, and often based on innovations that health workers have been introduced through by their international partners. Health workers reported a range of engagement with e-health innovations, mostly for communication (for example, email) and educational purposes (for example, online learning platforms). Poor, unreliable and unaffordable Internet was a commonly mentioned barrier to e-health use. Scaling-up existing e-health partnerships and innovations were suggested starting points to increase e-health innovation dissemination. CONCLUSIONS: Results from this study showed ICT based e-health innovations can relieve information and communication needs of health workers in post-conflict settings. However, more efforts and investments, preferably driven by healthcare workers within the post-conflict context, are needed to make e-health more widespread and sustainable. Increased awareness is necessary among health professionals, even among current e-health users, and physical and financial access barriers need to be addressed. Future e-health initiatives are likely to increase their impact if based on perceived health information needs of intended users

    From single-molecule detection to next-generation sequencing: microfluidic droplets for high-throughput nucleic acid analysis

    No full text

    Droplet-Based Microfluidics

    No full text
    Droplet-based microfluidics or digital microfluidics is a subclass of microfluidic devices, wherein droplets are generated using active or passive methods. The active method for generation of droplets involves the use of an external factor such as an electric field for droplet generation. Two techniques that fall in this category are dielectrophoresis (DEP) and electrowetting on dielectric (EWOD). In passive methods, the droplet generation depends on the geometry and dimensions of the device. T-junction and flow focusing methods are examples of passive methods used for generation of droplets. In this chapter the methods used for droplet generation, mixing of contents of droplets, and the manipulation of droplets are described in brief. A review of the applications of digital microfluidics with emphasis on the last decade is presented

    Molecular mechanisms of antibiotic resistance

    No full text
    Antibiotic-resistant bacteria that are difficult or impossible to treat are becoming increasingly common and are causing a global health crisis. Antibiotic resistance is encoded by several genes, many of which can transfer between bacteria. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This article reviews recent advances in our understanding of the mechanisms by which bacteria are either intrinsically resistant or acquire resistance to antibiotics, including the prevention of access to drug targets, changes in the structure and protection of antibiotic targets and the direct modification or inactivation of antibiotics
    corecore